
CS4231 Parallel and
Distributed Algorithms

Synchronisation

� Critical section
- Mutual exclusion (no more than one process in CS)
- Progress (if one or more processes wants to enter and no
one is in CS, then someone can enter)
- No starvation (if a process wants to enter, it can
eventually always enter, even in worst-case schedule)

� Peterson’s algorithm
boolean wantCS[i] = {false};

int turn = 0;

// Process 0

RequestCS(0) {

wantCS[0] = true;

turn = 1;

while (wantCS[1] == true

&& turn == 1);

}

ReleaseCS(0) {

wantCS[0] = false;

}

// Process 1

RequestCS(1) {

wantCS[1] = true;

turn = 0;

while (wantCS[0] == true

&& turn == 0);

}

ReleaseCS(1) {

wantCS[1] = false;

}

� Lamport’s bakery algorithm
- When a process arrives, get a queue number larger than
everyone else
- Due to interleaving, two processes might get the same
queue number; then be break ties by id

boolean choosing[i] = {false};

int number[i] = {0};

ReleaseCS(int myid) {

number[myid] = 0;

}

boolean Smaller(int number1, int id1, int number2, int

id2) {

if (number1 < number 2) return true;

if (number1 == number2) {

if (id1 < id2) return true; else return false;

}

if (number 1 > number2) return false;

}

RequestCS(int myid) {

choosing[myid] = true;

for (int j = 0; j < n; j++)

if (number[j] > number[myid]) number[myid] =

number[j];

number[myid]++;

choosing[myid] = false;

for (int j = 0; j < n; j++) {

while (choosing[j] == true);

while (number[j] != 0 &&

Smaller(number[j], j, number[myid],

myid));

}

}

� Dekker’s algorithm

boolean wantCS[] = {false, false};

int turn = 1;

public void requestCS(int i) { // entry protocol

int j = 1 - i;

wantCS[i] = true;

while (wantCS[j]) {

if (turn == j) {

wantCS[i] = false;

while (turn == j); // busy wait

wantCS[i] = true;

}

}

}

public void releaseCS(int i) { // exit protocol

turn = 1 - i;

wantCS[i] = false;

}

� Hardware solutions
- Disabling interrupts to prevent context switch
- Special machine-level instructions (TestAndSet)

� Semaphore
- no busy waiting

value = true;

queue = {};

P() {

if (value == false) {

add myself to queue and block;

}

value = false;

}

V() {

value = true;

if (queue is not empty) {

wake up one arbitrary process on the queue;

}

}

- exactly one process is waken up in V(), usually chosen
arbitrary (some implementations always choose the first in
queue)
- can implement CS using semaphore

� Dining philosophers problem
- Solution: pick up the lower-indexed chopstick first, to
avoid a cycle

� Monitor
- every Java object is a monitor
- two queues: normal CS queue, and CV
(wait/notify/notifyAll) queue
- Hoare-style monitor: object.notify() immediately
transfers control to awakened thread
- Java-style monitor: object.notify() awakened thread
still needs to queue with other threads (no specific priority)
(i.e. thread transits from ”Waiting” to ”Blocked” state)

� Single-producer single-consumer with monitors

void produce() {

synchronized

(sharedBuf) {

while (sharedBuf is

full)

sharedBuf.wait();

add an item to

buffer;

if (buffer *was*

empty)

sharedBuf.notify();

}

}

void consume() {

synchronized

(sharedBuf) {

while (sharedBuf is

empty)

sharedBuf.wait();

remove an item from

buffer;

if (buffer *was*

full)

sharedBuf.notify();

}

}

� (Multiple) reader-writer with monitors - writers
might get starved if there is a continuous stream of readers

void writeDB() {

synchronized (object) {

while (numReader > 0

|| numWriter > 0)

object.wait();

numWriter = 1;

}

// write to DB;

synchronized (object) {

numWriter = 0;

object.notifyAll();

}

}

void readDB() {

synchronized (object) {

while (numWriter > 0)

object.wait();

numReader++;

}

// read from DB;

synchronized (object) {

numReader--;

object.notify();

}

}

Consistency

� Sequential history / concurrent history
- A history is sequential if any invocation is always
immediately followed by its response
- Otherwise it is concurrent

CS4231 Parallel and Distributed Algorithms 12

Sequential History and Concurrent History

▪ A history H is sequential if

▪ Any invocation is always immediately followed by its

response

▪ I.e. No interleaving

▪ Otherwise called concurrent

Sequential:

inv(p, read, X) resp(p, read, X, 0) inv(q, write, X, 1) resp(q, write, X, OK)

concurrent:

inv(p, read, X) inv(q, write, X, 1) resp(p, read, X, 0) resp(q, write, X, OK)

� Legal sequential history
- Sequential history that satisfies sequential semantics of
the data type (i.e. ‘read’ operations should produce
expected results)

� Equivalence
- Two histories are equivalent if they have exactly the same
set of events (need not be in the same order)

� Process order
- Event a is before event b if they are on the same process
and they a is executed before b

� Sequential consistency
- A history is sequentially consistent if it is equivalent to
some legal sequential history that preserves process order

� Subhistory (H | p) of a process, or (H | o) of an
object
- Subsequence of all events in p, or all objects of o

� External order (occurs-before)
- Partial order, o1 < o2 iff response of o1 appears before
invocation of o2

� Linearizability (intuitive definition)
- Execution is equivalent to some execution where each
operation happens instantaneously at some point between
invocation and response

� Linearizability (formal definition)
- History H is equivalent to some legal sequential history S,
and the external order induced by H is a subset of the
external order induced by S

� Linearizable =⇒ sequentially consistent

� Linearizability is a local property
- H is linearizable ⇐⇒ ∀ object x, H | x is linearizable

� Sequential consistency is not a local property

Consistency Definitions for Registers

� Atomic ⇐⇒ linearizable

� Regular

CS4231 Parallel and Distributed Algorithms 38

Consistency Definitions for Registers

▪ An (implementation of a) register is called regular if

▪ When a read does not overlap with any write, the read returns the

value written by one of the most recent writes

▪ When a read overlaps with one or more writes, the read returns the

value written by one of the most recent writes or the value written

by one of the overlapping writes

▪ Definition of most recent writes

readwrite

the write whose response

time is the latest

An atomic register must

be regular

� Safe
- When a read does not overlap with any write, then it
returns the value written by one of the most recent writes
(same as Regular)
- When a read overlaps with one or more writes, it can
return anything

� Atomic =⇒ regular =⇒ safe

� Regular 6⇐⇒ sequential consistent

Models and Clocks

� Software clock
- No relation to physical time
- Allows a protocol to infer ordering among events

� Happens-before
- partial order that considers process order, send-receive
order, transitivity

� Logical clock
- Increment local counter at every “local computation” and
“send” event

- Receive event: C = max(C, V) + 1

CS4231 Parallel and Distributed Algorithms 9

Software “Clock” 1: Logical Clocks

▪ Each event has a single integer as its logical clock

value

▪ Each process has a local counter C

▪ Increment C at each “local computation” and “send” event

▪ When sending a message, logical clock value V is attached

to the message. At each “receive” event, C = max(C, V) + 1

user1 (process1)

user2 (process2)

user3 (process3)

1 2 3 4

1

3 = max(1,2)+1

4 5

1 2 3

3

4 = max(3,3)+1

� Vector clock
- Increment C[i] of local vector at every “local
computation” and “send” event
- Receive event: C = pairwise-max(C, V); C[i]++;

CS4231 Parallel and Distributed Algorithms 12

Vector Clock Protocol

▪ Each process i has a local vector C

▪ Increment C[i] at each “local computation” and “send” event

▪ When sending a message, vector clock value V is attached to

the message. At each “receive” event, C = pairwise-max(C, V);

C[i]++;

user1 (process1)

user2 (process2)

user3 (process3)

(1,0,0) (2,0,0) (3,0,0)

(0,0,2)

(0,2,2)(0,1,0)

(0,0,1)

(2,3,2)

(0,0,3)

C = (0,1,0), V = (0,0,2)

pairwise-max(C, V) = (0,1,2)

� Logical clock:
s happens before t =⇒ logical-clock(s) < logical-clock(t)
Vector clock:
s happens before t ⇐⇒ logical-clock(s) < logical-clock(t)
where “<” := every field in v1 is less than or equal to the
corresponding field in v2, and at least one field is strictly
less

� Matrix clock
- Overview:
— Each process maintains n vector clocks, one containing
data from each process
— ith vector on process i is called process i’s principle
vector
— Principle vector is the same as vector clock
— Non-principle vectors are just piggybacked on messages
to update “knowledge”
- Increment C[i] (C := principle vector of process i) at
every “local computation” and “send” event
- Receive event (principle vector C):
C = pairwise-max(C, V); C[i]++; (V := principle vector of
sender)
- Receive event (non-principle vector C):
C = pairwise-max(C, V); (V := corresponding vector of
sender)

CS4231 Parallel and Distributed Algorithms 19

Application of Matrix Clock

user3 now

knows

that all 3

users

have seen

D1

process1

with gossip

G1 = (1,0,0)

(1,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,1,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,1)

(2,0,0)

(0,0,0)

(0,0,0)

(3,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,2)

(0,0,0)

(0,2,2)

(0,0,2)

(2,0,0)

(2,3,2)

(0,0,2)

(0,0,0)

(0,0,0)

(0,0,3)

process2

with gossip

G2 = (0,1,0)

process3

with gossip

G3 = (0,0,1)

(2,0,0)

(2,4,2)

(0,0,2)

(2,0,0)

(2,4,2)

(2,4,4)

� Vector clock: Know what I have seen
Matrix clock: Know what other people have seen

Snapshots

� Global snapshot
- A set of events such that if e2 is in the set and e1 is before
e2 in process order, then e1 must be in the set

� Consistent global snapshot
- A global snapshot such that if e2 is in the set and e1 is
before e2 in send-receive order, then e1 must be in the set
- i.e. Consistent global snapshot captures all happens-before
relationships

� For any event ei of any process, there exists a consistent
global snapshot S where:{

ei ∈ S if i ≤ m
ei 6∈ S if i > m

� Protocol for consistent global snapshot (assume FIFO
delivery on each channel)
- Initiated by one process
- After each process takes a snapshot, it sends out a control
message to all other processes
- If a process receives a control message but has not taken a
snapshot, it takes a snapshot immediately
- For each pair of processes s and r, the messages received
between r’s snapshot time and the control message from s
to r are considered to be on-the-fly, and they are recorded
by r upon receipt

CS4231 Parallel and Distributed Algorithms 21

process1

process2





process2 records all messages received

in this window – These are the exact set

of messages that are only the “fly”

Chandy&Lamport’s Protocol:

Taking snapshots for messages on the fly

Causal order / Total order

� Causal order
- If s1 happened before s2, and r1 and r2 are on the same
process, then r1 must be before r2

� Protocol for ensuring casual order
- Each process maintains an n by n matrix M
- M [i, j] := num. of messages sent from i to j
- Before i sends a message to j, do M [i, j]++ before
piggybacking M with the message
- Deliver the message and set local matrix
M = pairwise-max(M,T) if:{

T [k, j] ≤M [k, j] ∀k 6= i

T [i, j] = M [i, j] + 1

- Otherwise delay message

� Total order (when broadcasting messages)
- All messages delivered to all processes in exactly the same
order

� Total order 6⇐⇒ casual order

� Total order broadcast protocol using a designated
coordinator

� Skeen’s algorithm for Total Order Broadcast
- Each process maintains logical clock and a message buffer
for undelivered messages
- A message in the buffer is delivered if: all messages in the
buffer have been assigned numbers, and this message has
the smallest number

CS4231 Parallel and Distributed Algorithms 25

Skeen’s Algorithm for Total Order Broadcast

▪ Each process maintains

▪ Logical clock and a message buffer for undelivered messages

▪ A message in the buffer is delivered / removed if

▪ All messages in the buffer have been assigned numbers

▪ This message has the smallest number

process 1

process 2

process 3

broadcast

message

put msg in

buffer

acknowledge

reply with

current logical

clock value

notify message number

pick the max clock value

received as message number

Leader Election

� Leader election on anonymous ring
- In the sense that there are no unique identifiers for each
process
- It is impossible using deterministic algorithms (by
symmetry)
- For unknown ring size it is not possible to terminate (i.e.
to be certain that there is a unique leader after a finite
number of steps)
Randomized algorithm that terminates with probability 1
on known ring size:
- At each phase, run Chang-Roberts algorithm (with hop
count)
- If a node receives its own message, then it is one of the
winners, so it proceeds to the next phases
- Losers only forward messages in future phases
- If there is only a single winner (can be detected by
winning mode), then the algorithm stops

� Leader election on ring: Chang-Roberts algorithm
- Each node has a unique id
- Nodes send election message with its own id clockwise
- Election message is forwarded if id in message is larger
than own id
- Otherwise message is discarded
- (When a node receives its own election message, it
becomes the leader)

� Chang-Roberts algorithm message complexity

CS4231 Parallel and Distributed Algorithms 7

Chang-Roberts Algorithm: Best/Worst Performance

▪ Best case:

▪ 2n-1 messages

2

4
8

7 5

2

8
4

5 7

▪ Worst case:

▪ n(n-1)/2 messages

For distributed systems, communication is the bottleneck.

Performance thus is often described as message complexity.

- Average case can be proved to be O(n log n).

� Leader election on complete graph
- Each node sends its id to all other nodes
- Wait until you receive n ids
- Biggest id wins

� Leader election on any connected graph
- Flood your id to all other nodes (using spanning tree
edges)
- Wait until you receive n ids
- Biggest id wins

� Spanning tree construction / Count number of
nodes on spanning tree

CS4231 Parallel and Distributed Algorithms 17

Spanning Tree Construction

▪ Remember: No centralized coordinator

▪ Goal of the protocol: Each node knows its parent and children (i.e.,

a distributed tree)

child

request

I’m your

child

I’m your

child

I’m NOT

your child

CS4231 Parallel and Distributed Algorithms 18

Counting Nodes Using a Spanning Tree

do-count

request
value = 1

value = 1

value =

1+1+1 = 3

value = 1

value = 1

final value computed

= 1+2+3+1 = 7

value =

1+1 = 2

no msg sent along

non-tree edges!

� Spanning tree usages
- Broadcast
- Any aggregation (count, sum, average, max, min, etc.)

Agreement / Consensus

� Crash failure: Node stops sending any more messages
after crashing

� Byzantine failure: Node can send arbitrary messages
after failing

� Synchronous: Message delay has a known upper bound x,
and node processing delay has a known upper bound y (so
that it is possible to accurately detect crash failures)
- For synchronous timing model, processes can always
proceed in inter-locked rounds, where in each round:
— Every process sends one message to every other process
— Every process receives one message from every other
process
— Every process does some local computation
(Can be implemented with accurate clocks, or clocks with
bounded error)

� Asynchronous: Message delay is finite but unbounded

� Goals
Termination: All non-failed nodes eventually decide
Agreement: All non-failed nodes should decide on the same
value
Validity: If all nodes have the same initial input, then that
value must be the decision value

� Ver0: No node or link failures: Trivial

� Ver1: Node crash failures, channels are reliable,
synchronous
- Forward messages to all other nodes for (f + 1) rounds to
tolerate f failures
(Key idea for proof: If there is a round in which no node
fails, then every non-failed node will have the same set of

messages)

CS4231 Parallel and Distributed Algorithms 14

Distributed Consensus Version 1: Protocol

input = 2 input = 1 input = 3

{1, 2, 3} {2, 3}

{1, 2, 3} {1, 2, 3}

Need one extra round for each failure !  f+1 rounds to tolerate f failures

round 1

round 2

f needs to be an input to the protocol --- namely, the

protocol needs the user to indicate the maximum

number of failures to be tolerated

S <- {my input}

for (int i = 1; i <= f+1; i++) {

// do this for f+1 rounds

send S to all other nodes

receive n-1 sets;

for each set T received: S <- Union(S, T)

}

Decide on min(S);

- It can be shown that any consensus protocol will take at
least (f + 1) rounds

� Ver2: No node failures, channels may drop
messages, synchronous
- It is immpossible to reach goal using a deterministic
algorithm (can consider the case where the communication
channel can drop all messages, do we decide on 0 or 1?)

Impossibility Proof via Contradiction

CS4231 Parallel and Distributed Algorithms 21

A B

input=0 input=0

decision=0 decision=0

A B

input=1 input=0

decision=? decision=0

A B

input=1 input=0

decision=0 decision=0

due to

validity

due to

indistingu

ishability

due to

agreement

A B

input=1 input=1

decision=0 decision=?

due to

indistingu

ishability

A B

input=1 input=1

decision=0 decision=0

due to

agreement

This last execution

contradict with validity

- Even with weakened validity requirement (decision is
required to be 1 only if no message is lost throughout the
execution), it is still impossible using a deterministic
algorithm

CS4231 Parallel and Distributed Algorithms 23

Impossibility Proof via Contradiction

input =1

decision = 1

input =1

decision = 1

input =1

decision = 1

because of

agreement

input =1

decision = 1

because

indistinguishable

lost

how to

rigorously

define last

message?

- With limited disagreement (all nodes must agree with
probability (1− perror)) and weakened validity, it is possible

CS4231 Parallel and Distributed Algorithms 26

A Randomized Algorithm

▪ For simplicity, consider two processes (can

generalize to multiple): P1 and P2

▪ Algorithm has a predetermined number (r) of rounds

▪ Adversary determines which messages get lost,

before seeing the random choices

▪ P1 picks a random integer bar  [1...r] at the

beginning

▪ The protocol allows P1 and P2 to each maintain a

level variable (L1 and L2), such that

▪ level is influenced by the adversary, but

▪ L1 and L2 can differ by at most 1

CS4231 Parallel and Distributed Algorithms 27

Simple Algorithm to Maintain Level

round 1

round 2

round 3

P1 P2

0 0

0 1

2 1

2 3

▪ P1 sends msg to P2 each round

▪ P2 sends msg to P1 each round

▪ bar, input and current level

attached on all messages

▪ Upon P2 receiving a msg with

L1 attached: P2 sets L2 = L1+1

▪ L1 maintained similarly

CS4231 Parallel and Distributed Algorithms 28

Simple Algorithm to Maintain Level

round 1

round 2

round 3

P1 P2

0 0

0 1

2 1

2 3

▪ Lemma: L1 and L2 never

decreases in any round,

and at the end of any

round, L1 and L2 differ by

at most 1.

CS4231 Parallel and Distributed Algorithms 29

Inductive Proof for the Lemma

round k

round k+1

L1 L1-1

L1 L1+1

round k

round k+1

L1 L1-1

L1 L1+1

round k

round k+1

L1 L1-1

L1 L1-1

round k

round k+1

L1 L1-1

L1 L1-1

CS4231 Parallel and Distributed Algorithms 30

Decision Rule
▪ At the end of the r rounds, P1 decides on 1 iff

▪ P1 knows that P1’s input and P2’s input are both 1, and

▪ L1  bar

▪ (This implies that P1 will decide on 0 if it does not see P2’s input.)

▪ At the end of the r rounds, P2 decides on 1 iff

▪ P2 knows that P1’s input and P2’s input are both 1, and

▪ P2 knows bar, and

▪ L2  bar

▪ (This implies that P2 will decide on 0 if it does not see P1’s input or

if it does not see bar.)

CS4231 Parallel and Distributed Algorithms 31

When does error occur?
▪ For P1 and P2 to decide on different values: One must decide on 1

while the other decide on 0

▪ For someone to decide on 1, P1’s input and P2’s input must be both 1

▪ Case 1:

▪ P1 sees P2’s input, but P2 does not see P1’s input or does not see bar

▪ Then L1 = 1 and L2 = 0. Error occurs only when bar = 1.

▪ Case 2:

▪ P2 sees P1’s input and bar, but P1 does not see P2’s input

▪ Then L1 = 0 and L2 = 1. Error occurs only when bar = 1.

▪ Case 3:

▪ P1 sees P2’s input, and P2 sees P1’s input and bar

▪ Define Lmax = max(L1, L2)

▪ Error occurs only when bar = Lmax.

CS4231 Parallel and Distributed Algorithms 32

Correctness Proof

▪ Termination: Obvious (r rounds)

▪ Validity:

▪ If all nodes start with 0, decision should be 0 – obvious

▪ If all nodes start with 1 and no message is lost throughout the

execution, decision should be 1 – If no messages are lost, then

L1=L2=r  P1 and P2 will decide on 1

▪ Otherwise nodes are allowed to decide on anything

▪ Agreement: With (1-1/r) probability – by arguments on previous

slide

� Ver3: Node crash failures, channels are reliable,
asynchronous
- FLP theorem states that this is impossible to solve even
with:
— up to one single node crash failure
— FIFO ordering within each channel
— non-blocking receive

� Ver4: Node Byzantine failures, channels are
reliable, synchronous
- n := total number of processes
- f := number of possible Byzantine failures
- Can be shown to be impossible to solve if n ≤ 3f
Protocol for n ≥ 4f + 1:
- High-level idea:
— Run (f + 1) phases (each phase contains a fixed number
of rounds)
— Each phase has a coordinator node
— A phase is a deciding phase if the coordinator is
non-faulty
— There must be at least one deciding phase, and after the
deciding phase it is impossible for a subsequent faulty

coordinator to overrule the deciding phase

CS4231 Parallel and Distributed Algorithms 35

Code for Process i:

V[1..n] = 0; V[i] = my input;

for (k = 1; k ≤ f+1; k++) { // (f+1) phases

send V[i] to all processes;

set V[1..n] to be the n values received;

if (value x occurs (> n/2) times in V) decision = x;

else decision = 0;

if (k==i) send decision to all; // I am coordinator

receive coordinatorDecision from the coordinator

if (value y occurs (> n/2 + f) times in V) V[i] = y;

else V[i] = coordinatorDecision;

}

decide on V[i];

round for
all-to-all

broadcast

coordinator
round

n processes; at most f failures; f+1 phases; each phase has two rounds

decide
whether to

listen to
coordinator

CS4231 Parallel and Distributed Algorithms 40

Correctness Summary

▪ Lemma 1: If all nonfaulty processes P_i have V[i] = y at the beginning

of phase k, then this remains true at the end of phase k.

▪ Lemma 2: If the coordinator in phase k is nonfaulty, then all nonfaulty

processes P_i have the same V[i] at the end of phase k.

▪ Termination: Obvious (f+1 phases).

▪ Validity: Follows from Lemma 1.

▪ Agreement:

▪ With f+1 phases, at least one of them is a deciding phase

▪ (From Lemma 2) Immediately after the deciding phase, all nonfaulty

processes P_i have the same V[i]

▪ (From Lemma 1) In following phases, V[i] on nonfaulty processes P_i

does not change

Self-Stabilization

� Legal state
- Defined by application semantics

� Self-stabilizing system: System where:
- Starting from any state, the protocol will eventually reach
a legal state if there are no more faults
- Once the system is in a legal state, it will only transit to
other legal states unless there are faults

� Rotating privilege algorithm
- Each process i has a local integer variable Vi, where
0 ≤ Vi < k for some constant k ≥ n

CS4231 Parallel and Distributed Algorithms 8

The Rotating Privilege Algorithm

▪ Each process i has a local integer variable V_i

▪ 0  V_i < k where k is some constant no smaller than n

12

0

3

9

12

Example: n = 5 and k = 13
order

in

legal

state

// Red process

L <- value of clockwise

neighbor;

V <- my value;

if (V == L) {

// do privileged action

V = (V+1) % k;

}

// Green process

L <- value of clockwise

neighbor;

V <- my value;

if (V != L) {

// do privileged action

V = L;

}

CS4231 Parallel and Distributed Algorithms 12

Legal States
▪ We say that a process makes a “move” if it has the privilege and changes

its value

▪ System in legal state if exactly one process can make a move

▪ Lemma: The following are legal states and are the only legal state

▪ All n values same OR

▪ Only two different values forming two consecutive bands, and one band starts

from the red process

▪ To prove these are legal states, only need to confirm there is exactly one

process that can make a more

▪ To prove these are the only legal states, consider the value V of the red

process and the value L of its clockwise neighbor

▪ Case I: V=L. Then the red process can make a move. No other process should

be able to make a move. Hence all n values must be same.

▪ Case II: VL. Starting from the red process, find counter-clockwise the first

green process whose value is different from its clockwise neighbor. Such green

process must exist since VL. This green process can make a move. No other

process should be able to make a move. Hence the two bands…

CS4231 Parallel and Distributed Algorithms 13

Legal States  Legal States

▪ Theorem: If the system is in a legal state, then it will stay in legal states

▪ Our assumption on instantaneous actions will simplify this proof.

▪ We can all possible actions.

▪ For the red process, the only action that can change the system state

happens when V==L, and that action will update V to be (V+1) % k.

▪ As we show earlier, when V==L, the only legal state is for all n values to be

the same. Hence updating V to be (V+1) % k will result in two bands of

values, which is also a legal state.

▪ For the green process, the only action that can change the system state

happens when V≠L, and that action will update V to L.

▪ As we show earlier, when V≠L, the only legal state is to have two bands of

values. Updating V to be L will either result in all n values being the same

(if the green process if the clockwise neighbor of the red process), or still

result in two bands of values (if otherwise). In either case, the system state

is still legal.

CS4231 Parallel and Distributed Algorithms 14

Illegal States  Legal States
▪ Lemma 1: Let P be a green process, and let Q be P’s clockwise

neighbor. (Q can be either green or red.) If Q makes i moves, then

P can make at most i+1 move.

▪ Lemma 2: Let Q be the red process. If Q makes i moves, then

system-wide there can be at most the following number of moves:

▪ Lemma 3: Consider a sequence of (n^2-n)/2+1 moves in the

system. The red process makes at least one move in the sequence.

▪ Lemma 4: In any system state (regardless of legal or not), there is

always at least one process that can make a move.

▪ Consider the value V of the red process and the value L of its clockwise

neighbor. If V=L, the red process can make a move. If VL, there must exist

some green process whose value differs from its clockwise neighbor’s. That

green process can make a move.

2

)1(
)1(...)2()1(

nn
niniiii

−
+=−+++++++

CS4231 Parallel and Distributed Algorithms 15

Illegal States  Legal States

▪ Lemma 5: Regardless of the starting state, the system eventually

reach a state T where the red process has a different value from the

values of any other process (though the system may not remain in

such states forever)

▪ Proof: Let Q be the red process. If in the starting state Q has the same

value as some other process, then there must be an integer j (0  j  k-1)

that is not the value of any process.

▪ In any state, at least one process can make move

▪ Eventually, the number of moves will approach infinity

▪ Q moves once among every consecutive (n^2-n)/2+1 moves of the

system

▪ Q will make infinite number of moves

▪ Q will eventually take j as its value. (It takes Q any most k moves to do

so.)

CS4231 Parallel and Distributed Algorithms 16

Illegal States  Legal States
▪ Lemma 6: If the system is in a state where the red process has a

different value from all other process, then the system will eventually

reach another state where all processes have the same value

(though the system make not remain in such a state forever).

▪ Proof: Let the red process be p1, and let p1’s value be x. Starting from

the red process and counter-clockwise along the ring, let the green

processes be p2, p3, …, p_n.

▪ Let t be such that p1 through p_t all have values of x, and p_{t+1}

through p_n all have values different from x. Initially t=1. We will prove

that for any t = s, t will become s+1 at some point of time. Hence

eventually t will be n, and we are done.

▪ To prove the above claim, note that p_{s+1} will take the value of x once

it takes an action. Denote this event as E. Before event E, p_{s+2}

through p_n can never take the value of x. Also, since p_n can never

take the value of x before event E, p_1 through p_s can never change

their value before event E. Hence, immediately after event E happens, t

becomes s+1.

CS4231 Parallel and Distributed Algorithms 17

Illegal States  Legal States

▪ Theorem: Regardless of the initial states of the system, the system

will eventually reach a legal state.

▪ Proof: From Lemma 5 and Lemma 6.

� Self-stabilizing spanning tree algorithm
- On the root node: dist = 0; parent = null;

- On other nodes (executed periodically):
— Retrieve dist from all neighbours
— Set my own dist = 1 + <smallest dist received>

and parent = <neighbour with smallest dist>

(tie-break if necessary)
Proof:
- Define a phase to be the minimum time period where each
process has taken an action
- Ai := length of the real shortest path from node i to root
- Lemma 1: At the end of phase 1, distroot = 0 and
disti ≥ 1 for all other i
- Lemma 2: At the end of phase r:
— Any process i with Ai < r, we have disti = Ai

— Any process i with Ai ≥ r, we have disti ≥ r
- Prove by induction using Lemma 1 and Lemma 2

